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Abstract. It is shown that a generalization of the covalent bond energy of the tight-binding bond
model to the case of a non-orthogonal basis set is an appropriate tool to describe the bonding
properties of solids in a chemical language. It does not suffer from problems related to the ill-
defined average electrostatic potential in periodic systems, in contrast to the formerly proposed
crystal orbital Hamilton population (COHP). The new tool is applied to discuss the stability of the
bcc, fcc and hcp structures of Nb, Mo, Ru and Rh.

In the last three decades, electronic density functional calculations (Hohenberg and Kohn
1964, Kohn and Sham 1965) have become a very powerful method to determine the most
stable structures of molecules or solids by computing total energies. However, a physical
insight may only be gained when analysing the results by methods based on simple models,
for instance, the nearly-free-electron model for sp-valent materials or the tight-binding model
for transition metals or semiconductors (see, e.g., Pettifor 1995). In the latter method the one-
electron wave functionψn(r), which is the solution of the one-electron Schrödinger equation in
the effective potential of the density functional theory, is expanded in a basis set of normalized
atomic-like localized orbitals|ϕβ〉 assigned to the atoms at the various sites,

ψn(r) =
∑
β

cβnϕβ(r). (1)

Here the indexβ denotes both the sitei of the atom and the type of the orbital given by
the quantum numbers for atomic-like states. The appealing feature of such an expansion is
that it allows the analysis ofab initio results in the intuitive chemical language developed
for molecules, i.e., in terms of bonding and anti-bonding hybrid orbitals. An analysis of this
type is self-suggesting if a localized basis set is used from the very beginning for the solution
of the effective one-electron Schrödinger equation, as in the linear combination of atomic
orbitals method (Mott and Jones 1936) or in the tight-binding linear muffin-tin orbital method
(Andersen and Jepsen 1984). When the original basis set includes plane waves, then the
resulting wave function afterwards can be projected (Sanchez-Portalet al 1995, 1996, Meyer
1998, Els̈asseret al 1999) on a set of suitably defined atomic-like orbitals for a succeeding
tight-binding analysis of the data.
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In density functional theory the total electronic densityρ(r) and the total energyEtotal of
the system (including the interaction energy of the nuclei) may be written in the form (Kohn
and Sham 1965)

ρ(r) =
∑
n

fn |ψn(r)|2 (2)

Etotal =
∑
n

fnEn +D [ρ(r), {Ri}] . (3)

Here thefn are the occupation numbers for the one-electron wave functionsψn with energy
En = 〈ψn|Ĥ |ψn〉, andD is a functional ofρ(r) depending on the positionsRi of the nuclei.
The first term of equation (3) denotes the so-called band energyEband

Eband =
∑
n

fnEn. (4)

The tight-binding analysis of the charge density is straightforward by inserting equation (1)
into equation (2), yielding (for real basis functionsϕα)

ρ(r) =
∑
αβ

∑
n

fnc
α
n

(
cβn
)∗
ϕα(r)ϕβ(r). (5)

Integrating over the whole volume gives

N =
∑
αβ

θαβ (6)

whereN is the number of electrons andθαβ denotes the orbital-resolved bond order defined as

θαβ =
∑
n

fnc
α
n

(
cβn
)∗
Oβα. (7)

Inclusion of the overlap matrixOβα = 〈ϕβ |ϕα〉 is indispensable for the case of a non-orthogonal
basis set. The quantityθβα is an appropriate tool (Hoffmann 1987) to characterize the bonding
character of the hybrid orbitals between statesϕα andϕβ . It changes sign when going from
a bonding state to an anti-bonding state. Summingθαβ over all orbitals at the atomsi andj
yields the bond orderθij between the two atoms which has a simple physical meaning (see,
e.g., Pettifor 1995, Horsfieldet al 1996). It is one half the difference between the number of
electrons in bonding states and anti-bonding states between atomsi andj . For an analysis of
the bonding character in a solid where there is a continuum of eigenvalues and corresponding
eigenfunctions, Hughbanks and Hoffmann (1983) have introduced an energy-resolved bond
order which is called crystal orbital overlap population,

COOPαβ(E) =
∑
n

δ(E − En)fncαn
(
cβn
)∗
Oβα. (8)

WhereasCOOPαβ(E) is able to describe the bonding character, it cannot analyse quantitatively
the contribution of the bonds to the total energy. Therefore Dronskowski and Blöchl (1993)
have introduced the crystal orbital Hamilton populationCOHPαβ(E) by writing the band
energy in the form

Eband =
∑
αβ

EF∫
−∞

COHPαβ(E) dE (9)

with

COHPαβ(E) =
∑
n

δ(E − En)fncαn
(
cβn
)∗
Hβα (10)
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with the Hamiltonian matrix elementHβα = 〈ϕβ |Ĥ |ϕα〉 and the Fermi energyEF . This
quantity changes sign at the same energy asCOOPαβ(E), i.e., it also yields the bonding
character of the hybrid orbitals: it is negative (positive) for bonding (anti-bonding) states.
Furthermore, it is designed to characterize quantitatively the contribution of a given bond to
the total energy.

Unfortunately, the band energy is not invariant against a shift of the potential by a constant
value,φ0, whereas the total energy is independent when the system as a whole is charge neutral.
Therefore, just by shifting the potential, the contributions of the two terms in equation (3) to the
total energy may be drastically modified whereas the sum of the two terms remains constant.
This does not constitute a problem when comparing the energies of various molecules, as
long as we consider the same shift of the potential for all molecules relative to the potential
at infinity. However, many density functional calculations are performed for periodic, i.e.,
infinitely extended systems. For these systems the average electrostatic potential has no
physical meaning. The average electrostatic potential of a finite system characterizes the
average change in energy which arises when a charge is put from far outside the system to
all possible sites of the system. This prescription is meaningless for an infinitely extended
system, and therefore the average electrostatic potential is not defined. Because a constant
potential shift does not affect the total energy, in most density functional calculations the
average electrostatic potential is just set to zero for all periodic systems. On the other hand,
the average electrostatic potential in a real finite system does have a well-defined physical
meaning, which depends on the termination of the system at the surface and on the charge
distribution in the bulk (Keefe and Spence 1994). If we generate an infinite system by infinitely
increasing the size of the finite system while keeping the shape and type of termination constant
we arrive at this value for the average potential. Therefore, setting the average potential to
zero for all periodic systems does not necessarily have the same meaning for each system, i.e.,
it does not represent a unique constant shift of the potential for all the systems. As a result,
it does not make sense to compare the contributions of the band energies to the total energies
of various periodic systems, and therefore the use ofCOHPαβ(E) is not well justified from a
theoretical point of view. This problem was already mentioned in the paper of Dronskowski
and Bl̈ochl (1993), but no solution was given.

It will be shown in the following that the above discussed problem does not appear when
an analysis is performed in the spirit of the tight-binding bond model (Suttonet al 1988), i.e.,
when generalizations of the promotion energy and the covalent bond energy of this model to
the case of a non-orthogonal basis set are used. To do this, we write equation (3) in the form

Etotal =
∑
n

fnEn −
∑
α

Nf reeatom
α Hαα +D +

∑
α

Nf reeatom
α Hαα (11)

whereNfreeatom
α denotes the number of electrons in stateα of the respective free atom. Inserting

equation (1) yields

Etotal =
∑
α,β

∑
n

fnc
α
n

(
cβn
)∗
Hβα −

∑
α

Nf reeatom
α Hαα +D′ (12)

whereD′ represents the sum of the last two terms in equation (11).
We now define the promotion energyEprom as

Eprom =
∑
α

(
qα −Nfreeatom

α

)
Hαα (13)

where

qα =
∑
β

∑
n

fnc
α
n

(
cβn
)∗
Oβα (14)
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is the gross charge of orbitalα corresponding to Mulliken’s analysis (Mulliken 1955) of the total
charge. The promotion energy is about the energy associated with the change of occupancy of
the atomic orbitals when forming the solid from free atoms. Equation (13) is a generalization
of the expression given in Suttonet al (1988) to the case of a non-orthogonal basis set. In this
case the inclusion ofOβα in the definition ofqα is indispensable to guarantee that all electrons
are considered for the promotion, i.e.,

∑
α qα = N =

∑
α N

f reeatom
α . Finally, we define the

covalent bond energy as

Ecov =
∑
α,β

∑
n

fnc
α
n

(
cβn
)∗
Hβα −

∑
α

Nf reeatom
α Hαα − Eprom =

∑
α,β

Ecov,αβ (15)

with

Ecov,αβ =
∑
n

fnc
α
n

(
cβn
)∗ [
Hβα −Oβαε̄βα

]
(16)

and

ε̄βα = 1
2(Hαα +Hββ). (17)

Ecov,αβ may be envisaged as the covalent bond strength of the pair of orbitalsα andβ. (For
the limitation of this assertion a similar discussion holds as given at the end of section 2 in the
paper of Dronskowski and Blöchl (1993).) Again, it is the generalization of the covalent bond
energy of the tight-binding bond model (Suttonet al 1988) to the case of a non-orthogonal
basis set. The corresponding energy-resolved covalent bond energy is given by

Ecov,αβ(E) =
∑
n

δ(E − En)fncαn
(
cβn
)∗ [
Hβα −Oβαε̄βα

]
(18)

= COHPαβ(E)− ε̄βαCOOPαβ(E). (19)

BecauseCOHPαβ(E) andCOOPαβ(E) change sign at the same energy when going from
bonding to anti- bonding states (or vice versa) the sign ofEcov,αβ(E) can equally well be used
to describe the bonding character.

The quantitiesEcov,αβ(E),Ecov,αβ andEcov are the counterparts toCOHPαβ(E),COHPαβ
andEbond , but they have the advantage that they do not depend on a shift of the potential by
a constantφ0. Shifting byφ0 transformsHβα intoHβα + φ0Oβα andHαα, ε̄βα intoHαα + φ0,
ε̄βα + φ0 becauseOαα = 1, so thatφ0 drops out of equation (16). Furthermore, the total
promotion energyEprom is independent ofφ0 because of

∑
α(qα − Nfreeatom

α ) = 0 (whereas
the contributions of the single orbitalsα to Eprom do depend onφ0). BecauseEtotal , Ecov
andEprom are independent ofφ0, this holds also forD′, and we thus have subdivided the
total energy into three contributions,Eprom, Ecov andD′ which are all independent ofφ0,
in contrast to the subdivision given in equation (3). It is therefore physically meaningful to
compare these contributions as well as the orbital- and energy-resolved quantitiesEcov,αβ(E)

for different structures in order to figure out which term is most important for the stability of
a given structure.

It should be noted that the quantitative values ofEcov,αβ(E) depend to some extent on the
form of the orbitals used in the atomic-like basis set. A discussion of the same problem for the
COHPαβ(E) is given in the paper of Dronskowski and Blöchl (1993). If possible, the analysis
therefore should be performed with different choices for the basis set in order to figure out the
features which are invariant with respect to the change of the basis orbitals.

For an illustration, we consider the stability of the bcc, fcc and hcp structure of Nb, Mo,
Ru and Rh as obtained by the tight-binding linear muffin-tin orbital method in atomic-sphere
approximation (Andersen and Jepsen 1984) and a minimal basis set of s, p and d states for the
valence electrons. Table 1 represents the cohesive energyEcoh (which is the total energy minus
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Table 1. Cohesive energyEcoh, covalent bond energyEcov , promotion energyEprom, and the sum
E1 = Ecov + Eprom for Nb, Mo, Ru and Rh in the bcc, fcc and hcp structures (in Ryd) and the
respective contributions to the structural energy differences (in mRyd).�at denotes the atomic
volume for which the calculation has been performed.

Ecoh Ecov Eprom E1

Nb,�at = 120.3 a.u.
bcc −0.8018 −1.5787 0.2757 −1.3030
fcc −0.7720 −1.5689 0.2863 −1.2826
hcp −0.7710 −1.5496 0.2668 −1.2827
bcc–fcc −29.80 −9.84 −10.60 −20.44
hcp–fcc 0.35 12.15 −13.05 −0.89

Mo,�at = 105.5 a.u.
bcc −0.8584 −1.8067 0.3836 −1.4230
fcc −0.8268 −1.7370 0.3328 −1.4042
hcp −0.8238 −1.7169 0.3148 −1.4021
bcc–fcc −31.59 −69.66 50.82 −18.84
hcp–fcc 3.05 14.90 −13.28 1.61

Ru,�at = 91.8 a.u.
bcc −0.6958 −1.6587 0.3627 −1.2960
fcc −0.7389 −1.7092 0.3827 −1.3265
hcp −0.7446 −1.7186 0.3894 −1.3292
bcc–fcc 43.11 50.49 −20.02 30.47
hcp–fcc −5.66 −7.91 4.92 −2.99

Rh,�at = 97.3 a.u.
bcc −0.5843 −1.3135 0.2731 −1.0404
fcc −0.6072 −1.3733 0.3184 −1.0549
hcp −0.6029 −1.3694 0.3184 −1.0511
bcc-fcc 22.88 59.80 −45.25 14.55
hcp-fcc 4.36 6.47 −2.75 3.72

the energy of the free atoms forming the crystal), the covalent bond energyEcov, the promotion
energyEprom and the sumE1 = Ecov + Eprom. It becomes obvious that the differencesE
(bcc–fcc) andE (hcp–fcc) are of the same order of magnitude forE = Ecoh, Ecov, Eprom
andE1, and that therefore in principle all three parts (Ecov, Eprom, D′) to the total energy
may be relevant for the structural stability. Nevertheless, if we consider justEcov it exhibits
the same energetic succession for the different structures asEcoh, and it is therefore tempting
to analyse the structural stability in terms of the various contributions to the covalent bond
energy. It thereby turns out that the contributions of the bonds between two atoms decrease
rather rapidly with increasing separation of the atoms, and we therefore confine ourselves, in
the following discussion, to contributions from nearest-neighbour pairs. Figure 1 exhibits, for
the bcc structures of Mo and Ru, the energy- and orbital-resolved contributions of a nearest-
neighbour pair, where we have summed theEcov,αβ(E) over the magnetic quantum numbers
of the orbitals, yielding the energy-resolved s–s, s–p, s–d, p–p, p–d and d–d contributions.
The figure exhibits in addition the respective quantities integrated over all energies up to the
considered energy, i.e.,

IEcov,αβ(E) =
E∫

−∞
Ecov,αβ(E

′) dE′. (20)

Obviously, the d–d contributions are most relevant. For Mo they have bonding character almost
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up to the Fermi energyEF , whereas for Ru they change from bonding to anti-bonding character
in the middle of the d band, thus destabilizing the bcc structure. The weakening of the d–d
bond due to anti-bonding contributions at higher energies appears also for the hcp structure of
Ru, but the weakening is less strong than for the bcc structure, and this is compatible with the
fact that the hcp structure is the ground-state structure of Ru.
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Figure 1. Energy-resolved covalent bond energyEcov(E) (strong curves) for s–s, s–p, s–d, p–p,
p–d and d–d bonds between nearest-neighbour atoms of bcc Mo (a) and bcc Ru (b), and the
corresponding energy-integrated quantitiesIEcov(E) (weak curves, units in Ryd).
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To conclude we have shown that a generalization of the covalent bond energy of the tight-
binding bond model to the case of a non-orthogonal basis set is an appropriate tool to describe
the bonding properties of periodic systems without suffering from the problems related to
the ill-defined average electrostatic potential in these systems. In addition to the analysis
of the electronic structure in a chemical language by means of this tool we plan to use it
for the development of semi-empirical tight-binding models for intermetallic compounds. In
order to obtain transferable tight-binding models it is necessary to find appropriate analytical
parametrizations of the Hamiltonian matrix and the overlap matrix (see, e.g., Haaset al 1997)
and to fit the parameters to a data base which is a representative signature of the binding
properties of the material. We think thatab initio results forEcov,αβ(E) of properly chosen
reference configurations should be included in the data base in order to account for the
complicated electronic structure of intermetallic compounds (Schultz and Davenport 1993).

The authors are indebted to G Bester, C Elsässer and L Schimmele for many helpful discussions.
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